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Superradiance of Blackholes
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The Klein–Gordon equation is separated and the superradiance phenomenon is
studied on five-parameter (mass, angular momentum, cosmological constant,
electric and magnetic charges) black-hole spacetimes.

1. INTRODUCTION

In recent years there has been considerable interest in the extension of
the superradiance phenomenon of black holes to the more general Plebanski
(1975) and Plebanski–Demianski (1976) spacetimes. Some physically inter-
esting spacetimes, namely the black-hole spacetimes as well as their general-
ization by Carter (1973) to include a cosmological term, can be obtained
from the Plebanski spacetime by appropriate limiting procedures. Such space-
times as the Kinnersley (1969), Plebanski (1975), Demianski–Newman
(1966), Kerr–Newman (Newman et al., 1965), Brill (1965), Carter (1973), and
Bertotti (1959) spacetimes can be obtained from the Plebanski–Demianski
spacetime by limiting procedures. In the Plebanski spacetime (Ahmed and
Dolan, 1986; Ahmed, 1987, 1988) as well as in the Plebanski–Demianski
spacetime (Ahmed and Ansary, 1990) the superradiance phenomenon occurs
in cases of boson (gravitational and electromagnetic) fields, whereas no
superradiance phenomenon occurs in the cases of fermion (electron and
neutrino) fields.

In this paper, we study the superradiance phenomenon for a scalar field
in black-hole spacetimes generalized with a cosmological constant as well
as magnetic monopole parameters. Spacetimes with a cosmological parameter
have attracted renewed interest as models of the inflationary scenario of the
early universe. Moreover, interest in spacetimes with a magnetic monopole
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has grown since the development of gauge theories has shed new light on
the magnetic monopole, even though the ingenious suggestion by Dirac that
the magnetic monopole exists was neglected due to failure to detect such
a particle.

For an investigation of superradiance for a scalar field in this spacetime,
we separate the Klein–Gordon equation in this spacetime. First we give a
brief account of the background spacetime.

2. THE BACKGROUND SPACETIME

We consider the spacetime

ds2 5 S D21
r (dr 2 1 D21

u du2) 1 S21(Du sin2u W 2
1 2 DrW 2

2) (1)

where

S 5 r 2 1 a2 cos2u

Dr 5 (r 2 1 a2)11 2
1
3

Lr 22 2 2Mr 1 Q2 1 P2

Du 5 1 1
1
3

La2 cos2u

W1 5 E21[adt 2 (r 2 1 a2)df]

W2 5 E21(dt 2 a sin2u df)

E 5 1 1
1
3

La2

This is a solution to the Einstein–Maxwell equations with nonzero cosmologi-
cal constant L, mass M, angular momentum per unit mass a, electric charge
Q, and magnetic charge P.

The electromagnetic vector potential is

Amdxm 5 S21 (P cos u W1 1 QrW2) (2)

The angular velocities of the event horizon and of the cosmological horizon are

VH 5
a

r 2
H 1 a2 and VC 5

a
r 2

C 1 a2 (3)

The electric potentials of the event horizon and the cosmological horizon are
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VH 5
QrH 1 aP
E(r 2

H 1 a2)
and VC 5

QrC 1 aP
E(r 2

C 1 a2)
(4)

where rH and rC are the respective positions of the event horizon and of the
cosmological horizon.

The metric (1) includes as special cases (i) the Kerr–Newman black
hole when P5L50, (ii) the Kerr black hole for Q5P5L50, (iii) the Kerr–
Newman de Sitter black hole if P50, and (iv) the Kerr–de Sitter black hole
provided Q5P50.

3. SEPARATION OF THE KLEIN–GORDON EQUATION

The Klein–Gordon equation (Schwinger, 1975) in a general spacetime
with a background electromagnetic field is

1

!2g 1 ­

­xm 2 ieAm2F!2ggmn1 ­

­xn 2 ieAn2cG 5 m82c (5)

where g 5 .gmn., c is the complex scalar field, A is the four-potential of the
electromagnetic field, and e and m8 are electric charge and mass of the
particle, respectively. Here, for simplicity, we have considered the case in
which the magnetic charge of the particle is zero. If we write equation (5)
on the background spacetime given by equation (1), the parameters (M, a,
P, Q, L) become parameters of the field equation.

We shall assume that the components of the wave function in the present
context have the dependence exp[2ivt 1 i(m 2 E21eP)f] on t and f, where
m and E21eP are integers or half integers.

Therefore, setting

c 5 R(r)S(u)F(t, f) (6)

F(t, f) 5 exp[2ivt 1 i(m 2 E21eP)f]

we can separate equation (5) into the following angular and radial parts:

1
sinu

d
du 1Du sin u

dS
du2

1 F E2

Du sin2u
{2v2a2sin4u 1 2E21ePva sin2u cos u

2 (m 2 E21eP 1 E21eP cos u)2} 2 m82 a2cos2u 1 l]S 5 0 (7)
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d
dr 1Dr

dR
dr2 1 VR 5 0 (8)

where

V 5
E2K 2

Dr
2 m82r 2 2 l

K 5 v(r 2 1 a2) 2 am 1 E21e(Qr 1 aP)

2l 5 2av(m 2 E21eP) 2 a2v2 2 l1

and l1 is the separation constant which appears as an eigenvalue in the
eigenvalue equation (7). Specializing the parameters (a, M, P, Q, L), one
arrives at the special subclasses of angular and radial equations. With appro-
priate limits, the radial equation (8) reduces to that of Teukolsky (1973) in
the case of a scalar field. If L 5 0, equation (8) corresponds to Semiz’s
equation (10) (Semiz, 1992).

4. SUPERRADIANCE

Introducing the coordinate r* defined by

d
dr*

5
Dr

r 2 1 a2

d
dr

(9)

together with a new function R̂ defined by

R̂ 5 (r 2 1 a2)1/2R (10)

we can reduce equation (8) to the following compact form:

d 2R̂
dr *2 1 F E2K 2

(r 2 1 a2)2 2
Dr

r 2 1 a2

3 Hm82r 2 1 l 1 !(r 2 1 a2)
d
dr H rDr

(r 2 1 a2)3/2JJGR̂ 5 0 (11)

As r* → 1 ` equation (11) becomes

d 2R̂

dr*2
1 E2(v 2 v+)2R̂ 5 0 (12)

where

v+ 5 mVc 1 eVC

and as r* → 2`, equation (11) becomes
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d 2R̂

dr*2
1 E2(v 2 v2)2R̂ 5 0 (13)

where

v2 5 mVH 1 eVH

Now we impose the boundary condition such that the group velocity of
the wave for r* → 2` is directed toward the event horizon. That is, the
wave plunges in from the cosmological horizon, partially passes through the
potential barrier, and falls through the event horizon while the rest reflects
back to the cosmological horizon. Turning to the problem of reflection and
transmission, we seek solutions for R̂ which have the asymptotic behaviors

R̂ → B exp{2i(v 2 v2)r*},
r* → 2` R̂ → exp{2i(v 2 v+)}r* 1 A exp{i(v 2 v+)}r*,
r* → 1` 6

For solutions having these asymptotic behaviors,

1R̂
dR̂*
dr*

2 R̂*
dR̂
dr*2

r*→2`

5 2i(v 2 v2).B.2 (15)

and

1R̂
dR̂*
dr*

2 R̂*
dR̂
dr*2

r*→1`

5 2i(v 2 v+)(1 2 .A.2) (16)

Hence, by the constancy of the Wronskian of R̂ in equation (11), we
find the following relation:

1 2 .A.2 5 1v 2 v2

v 2 v+
2 .B.2 (17)

Equation (17) implies that if (v 2 v2)/(v 2 v+) , 0, .A.2 . 1, i.e.,
the amplitude of the reflected wave is greater than that of the incident wave.
This is the phenomenon of superradiance, and the condition for the existence
of superradiance is v+ , v , v2.

5. REMARKS

This work can be extended easily to spacetimes like those of Plebanski
and Plebanski–Demianski which include all the black-hole solutions which
are asymptotically flat as well as asymptotically de Sitter and also other
interesting spacetimes.
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